

CLASS: IX

SUBJECT - MATH

TOPIC: MENSURATION

Dated : 25.06.2020

WORKSHEET # 22

AREA AND PERIMETER OF PLANE FIGURES

Perimeter: The perimeter of a plane figure is the length of its boundary.

The unit of perimeter is the unit of length.

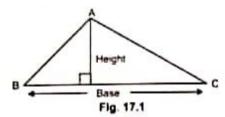
Area: The area of a plane figure is a measure of the surface enclosed by its boundary. It is measured in square units.

Example: For small regions, standard units of area, sq. cm (cm²) are used. For larger regions, sq. m (m²) and sq. km (km²) are used. Fields are generally measured in hectares.

Area and Perimeter of Triangles

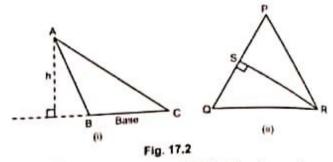
1. Area of a triangle = $\frac{1}{2}$ * base * height

Any side of a triangle can be taken as base, then the corresponding altitude (height) is used.



Perimeter of $\triangle ABC = AB + BC + AC$

In obtuse triangle, height is outside triangle as shown in Fig. 17.2(i).



In APQR [Fig. 17.2(ii)], if PQ is the base, then RS is the height.

Right-angled Triangle: In a right-angled triangle, the two sides containing the right angle are the base and height.

Area of
$$\triangle PQR = \frac{1}{2} \times PQ \times QR$$

where $\angle Q = 90^{\circ}$

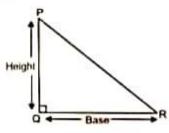
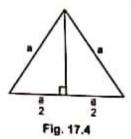


Fig. 17.3

Perimeter of APQR = PQ + QR + PR

Equilateral Triangle: In an equilateral triangle, the altitude bisects the side.



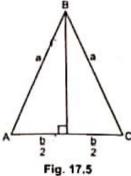
Using Pythagoras theorem,

Altitude =
$$\sqrt{a^2 - \frac{a^2}{4}} = \frac{\sqrt{3}}{2}a$$

Area of equilateral $\Delta = \frac{1}{2}a \times \left(\frac{\sqrt{3}}{2}\right)a$
 $= \frac{\sqrt{3}}{4}a^2$

Perimeter of equilateral triangle = 3a

Isosceles Triangle: In an isosceles triangle also, the altitude on the unequal side bisects it.



Height can be found using Pythagoras theorem. If the equal sides = a and base = b.

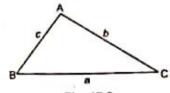
Height on the base =
$$\sqrt{a^2 - \frac{b^2}{4}} = \frac{\sqrt{4a^2 - b^2}}{2}$$

:. Area =
$$\left(\frac{1}{2} \times b\right) \left(\frac{\sqrt{4a^2 - b^2}}{2}\right) = \frac{1}{4}b\sqrt{4a^2 - b^2}$$

Perimeter of $\triangle ABC = 2a + b$

Heron's Formula

When all three sides of a triangle are given.



Flg. 17.6

Area
$$\Delta = \sqrt{s(s-a)(s-b)(s-c)}$$

where
$$s = \text{Semi-perimeter} = \frac{a+b+c}{2}$$

Example 1: Find the area of a triangle with sides 25 cm, 25 cm and 30 cm.

Solution:
$$s = \frac{25 + 25 + 30}{2} = 40$$

Using Heron's formula,

Area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

= $\sqrt{40(40-25)(40-25)(40-30)}$
= $\sqrt{40 \times 15 \times 15 \times 10} = 15 \times 20 = 300 \text{ cm}^2$

Example 2: Find the area of an equilateral triangle with side 12 cm.

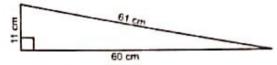
Solution: Area of equilateral triangle

$$= \frac{\sqrt{3}}{4} \times \text{side}^2 = \frac{1.732}{4} \times 12 \times 12$$
$$= 1.732 \times 36 = 62.352 \text{ cm}^2$$

Example 3: Find the area of a triangle with sides 11 cm, 60 cm and 61 cm.

Solution: Observe that $11^2 + 60^2 = 61^2$

∴ It satisfies Pythagoras theorem. Thus, it is a right-angled Δ.

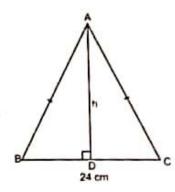


Area of
$$\Delta = \frac{1}{2} \times 11 \times 60 = 330 \text{ cm}^2$$

Note: Recognising a few Pythagoreans triplets helps in finding the area in a simple way.

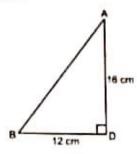
Example 4: The base of an isosceles Δ is 24 cm and its area is 192 cm². Find its perimeter.

Solution:



Area of
$$\Delta = \frac{1}{2} * b * h = 192$$

 $\frac{1}{2} * 24 * h = 192$

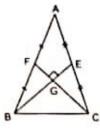


In $\triangle ABD$, h = AD = 16 cm, b = BD = 12 cm

$$AB = \sqrt{12^2 + 16^2} = 20 \text{ cm} = AC$$

$$\therefore$$
 Perimeter = 24 + 20 + 20 = 64 cm

Example 5: In \triangle ABC, medians BE and CF intersect at G at right angles. BE = 15 cm, CF = 12 cm. Find the area of \triangle ABC.



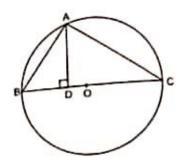
Solution:

Medians intersect at centroid in the ratio 2:1.

CG =
$$\frac{2}{3}$$
 × CF = $\frac{2}{3}$ × 12 = 8 cm
Area of \triangle BEC = $\frac{1}{2}$ × BE × CG
= $\frac{1}{2}$ × 15 × 8 = 60 cm²
Area of \triangle ABC = $\frac{1}{2}$ × Area of \triangle BEC = 120 cm²

[Median bisects the Δ into 2 equal areas]

Example 6: The radius of the circumcircle of a right-angled triangle is 6 cm and the altitude drawn to the hypotenuse is 4.5 cm. Find the area of the triangle.



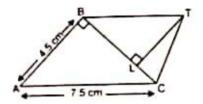
Solution:

:. Hypotenuse BC =
$$2r = 12$$
 cm
Altitude, AD = 4.5 cm

Note: In a right-angled Δ , the circumcentre lies at the mid-point of the hypotenuse.

$$\therefore \text{ Area of } \Delta ABC = \frac{1}{2} \times 12 \times 4.5 = 27 \text{ cm}^2$$

Example 7: In the figure, $\triangle ABC$ is rightangled at B. AC = 7.5 cm, AB = 4.5 cm. TL is perpendicular to BC. Calculate TL if the area of the quadrilateral ABTC is 18 cm^2 .

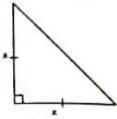


Solution: Using Pythagoras theorem,

BC =
$$\sqrt{7.5^2 - 4.5^2} = 6 \text{ cm}$$

Area of $\triangle ABC = \frac{1}{2} \times 4.5 \times 6 = 13.5 \text{ cm}^2$

Example 8: The area of an isosceles rightangled triangle is 72 cm². What is the length of its hypotenuse? solution: Let x be the length of equal sides.



Area of
$$\Delta = \frac{1}{2} x \times x = 72$$

 $x^2 = 144 \Rightarrow x = 12$

: Hypotenuse =
$$\sqrt{x^2 + x^2}$$

= $\sqrt{144 + 144} = \sqrt{2 \times 144}$
= $12\sqrt{2} = 12 \times 1.414 = 16.968$ cm

Example 9: The base of a triangular field is double its height. The cost of cultivating the field at ₹360 per hectare is ₹5760. Find its base and height.

Solution: Let the height be x m.

$$Base = 2x$$
Area of $\Delta = \frac{1}{2} \times 2x \times x = x^2$

Area of the field =
$$\frac{\text{Total cost}}{\text{Rate per hectare}}$$

= $\frac{5760}{360}$ = 16 hectares

∴
$$x^2 = 160000 \text{ m}^2$$
 [∴ 1 hectare = 10000 m²]
⇒ $x = \sqrt{160000} = 400 \text{ m}$

Example 10: The area of a triangle is 48 cm². Find the base if the altitude exceeds the base by 4 cm.

Solution: Let the base be x cm.

$$\therefore$$
 Altitude = $(x + 4)$ cm

Area =
$$\frac{1}{2} \times x(x+4) = 48$$

 $x^2 + 4x = 96$

$$x^2 + 4x - 96 = 0$$

$$(x+12)(x-8)=0$$

$$\therefore$$
 $x = 8 \Rightarrow Base = 8 cm$

EXERCISE

Find the area of triangle with following sides.
 [All measures are in cm.]

(i) 10, 17, 21 (ii) 17, 25, 28 (iii) 25, 39, 40

The sides of a triangle are in the ratio 5: 12: 13. If its perimeter is 90 cm, find the area of the triangle.

In ΔABC, ∠A = 90°, AB = 14 cm, AC = 48 cm.
 Find the

(i) area of AABC

(ii) length of perpendicular from A to BC

 In ΔPQR, ∠Q = 90° and PQ = QR = 6 cm. Calculate the

(i) area of triangle

(ii) length of perpendicular from Q to PR

[Take $\sqrt{2} = 1.414$]

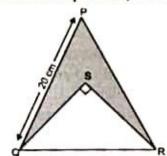
Find the area of an isosceles right triangle with hypotenuse 40 cm.

 The base of an isosceles triangle is 40 cm and its area is 420 cm². Find the length of its equal sides.

- In an isosceles triangle, the unequal side is 22 cm and perimeter is 144 cm. Find its area.
- Find the area of an equilateral triangle with side 8 cm. [Take √3 = 1.732].

If the area of an equilateral triangle is 25 √3 cm², find its perimeter.

In the given figure, PQR is an equilateral triangle of side 20 cm. ΔQSR is inscribed in it, ∠QSR = 90°, QS = 16 cm. Find (i) SR, (ii) the area of the shaded portion. [Take √3 = 1.732].



SUGGESTED LINKS

1. https://youtu.be/zLyvu3gUAC8