

CLASS :IX

Subject:Chemistry Topic:Study of gas laws

Date:02/06/2020 Time Limit:40 min.

Worksheet No. 7

3. Comparison in the properties of solid, liquid and gas.

-	Solid		Liquid		Gas
(i)	Solids have definite shape and definite volume.	(i)	Liquids have no definite shape. They take the shape of the container but they have definite volume.	(i)	Gases have neither definite shape nor definite volume.
(ii)	In solids, the molecules are closely packed.	(ii)	In liquids, the molecules are loosely packed.	(<i>ti</i>)	In gases, the molecules are far apart from each other.
(iii)	In solids, the intermolecular space is minimum.	(iii)	In liquids, the intermolecular space is more than solids.	(iii)	In gases, the intermolecular space is maximum.

 (iv) In solids, the intermolecular force of attraction is maximum. 	 (iv) In liquids, the intermolecular force of attention 	(iv) In gases, the intermolecular
(v) Solids cannot flow.	solids,	force of attraction is minimum or negligible.
	 (v) Liquids flow from higher level to lower level 	
Characteristics of Gases: The gen	to lower level.	directions.
and anguly compressit	nape nor definite volume: The mo olecular force of attraction is min	elecules in gases are far apart from imum and hence gases occupy the
have the minimum density	y: As gases have the smallest ma	ss per unit volume, therefore, they
(iv) Gases easily undergo diffus each other to form homoge	sion: Gases readily undergo inter neous mixture as they have maxi	rmixing when kept in contact with
Gas Laws: Gas laws describe th and volume.	e behaviour of a gas under the c	conditions of pressure, temperature
The variables used during gas la	aws are the pressure (P), temperative	ature (T) and volume (V) .
(i) Units of Temperature:		"A discharge areas in a the lost of
(a) Celsius (°C)		to the content of the rest
Relationship between Celsi	us and kelvin:	
attractive sector		
	$^{\circ}C = K - 273$	
For example: Conversion of	of temperature on the Celsius sca	ale to the Kelvin scale:
() 0.90 - 0 + 273 - 273	$(b) -273 ^{\circ}C =$	= -2/3 + 2/3 = 0 K
(a) $100 ^{\circ}\text{C} = 100 + 273 =$	= 373 K (d) 200 °C =	200 + 273 = 473 K
(ii) Units of Volume:		sense contract of the personnels
(a) Millilitre (mL)		ntimetre (cm ³)
(c) Litre (L)	e, millilitre and cubic centimetre	
Relationship between inte	1 litre = 1000 mL = 1000 cm	n ^o
	$1 \text{ mL} = 1 \text{ cm}^3$	
(iii) Units of Pressure:		Mercury (Hg) (cm of Hg)
(a) Atmosphere (atm)	(mm of Hg)	
(c) mm of Mercury (Hg) Relationship between Atr		and of the
Relationship between Att	nosphere and Mercury: mere = 76 cm of Hg = 760 mm	f of Hg = 760 of Hg
1 atmospr	at at constant temperature, t	the volume of a given mass of a copy of
6 Boyle's law: Boyle's law states	mar ar constant	the volume of a given mass of a dry gas (at constant T
 Boyle's law: Boyle's law end to p is inversely proportional to p 		
	$V \propto \frac{1}{p}$ where $V =$ Volume	of the dry gas, $P =$ Pressure on the ga

(where K is constant)

-

Hence, Boyle's law equation is $P_1 V_1 = P_2 V_2$ where P_1 = Initial pressure, V_1 = Initial volume, P_2 = Final pressure, V_2 = Final volume

 $V = K \frac{1}{p}$ PV = K

7. Charles' law

Charles' law Pressure of an enclosed mass of a dry gas remaining constant, the volume of the gas is directly resource of an enclosed mass of a dry gas remaining constant, the volume of the gas is directly proportional to absolute temperature. This law is known as Charles' law.

(at constant P) $V \propto T$ where V = Volume of the dry gas and T = Temperature of the $\frac{1}{gas}$ (where K is constant) V = KT $\frac{V}{T} = K$

Hence, Charles' law equation is $\frac{V_1}{T_1} = \frac{V_2}{T_2}$

where V_1 = Initial volume, V_2 = Final volume, T_1 = Initial temperature, T_2 = Final temperature 8. Kelvin Scale: The new temperature scale on which the zero is at - 273 °C, such that each degree on it is equal to one degree on the Celsius is called the Kelvin scale.

9. Absolute zero: It is the last or the lowest limit of temperature at which the volume becomes theoretically zero. The temperature for absolute zero is - 273 °C.

10. The standard temperature is 0 °C or 273 K.

- 11. The standard pressure is 760 mm of Hg or 76 cm of Hg or 1 atmosphere.
- 12. Gas Equation: By combining Boyle's law and Charles' law, the perfect gas equation can be derived as follows:

According to Boyle's law

$$V \propto \frac{1}{P}$$
 ...(i)

According to Charles' law

=

=

=

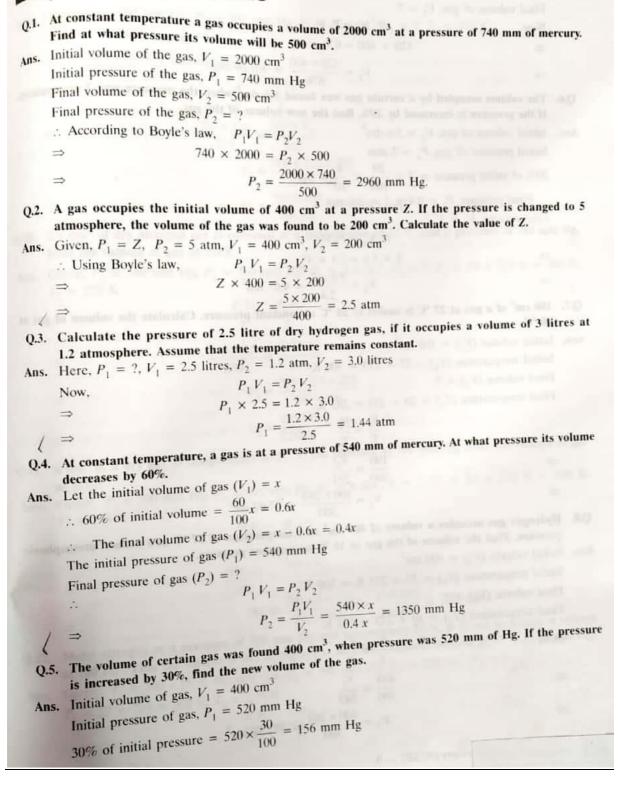
Hence

$$V \propto T$$
 ...(ii)

Combining Boyle's law (i) and Charles' law (ii), we get

$$V \propto \frac{1}{P} \times T$$

$$V \propto \frac{T}{P}$$


$$V = K \frac{T}{P}$$

$$\frac{PV}{T} = K$$
(where K is constant)

e, Perfect Gas Equation is $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$

$$P_1 = \text{Initial pressure, } P_2 = \text{Final pressure, } V = 1 \text{ for } V$$

where pressure, V_1 = Initial volume, V_2 = Final volume, T_1 = Initial temperature, T_2 = Final temperature.

SOLVED QUESTIONS

: Final pressure, $P_2 = 156 + 520 = 676 \text{ mm Hg}$ Final volume of gas, $V_2 = ?$ Now. $P_1 V_1 = P_2 V_2$ $520 \times 400 = 676 \times V_2$ $V_2 = \frac{520 \times 400}{676} = 307.69 \text{ cm}^3.$ Q.6. The volume occupied by a certain gas was found 5.6 dm³ when the pressure was 2 atmosphere If the pressure is increased by 20%, find the new volume of the gas. Ans. Initial volume of gas, $V_1 = 5.6 \text{ dm}^3$ Initial pressure of gas, $P_1 = 2$ atm 20% of initial pressure = $2 \times \frac{20}{100} = \frac{4}{10} = 0.4$ \therefore Final pressure, $P_2 = 0.4 + 2 = 2.4$ atm Final volume, $V_2 = ?$ $P_1 V_1 = P_2 V_2$ = $2 \times 5.6 = 2.4 \times V_2$ $V_2 = \frac{5.6 \times 2}{2.4} = 4.67 \text{ dm}^3$ Q.7. 100 cm³ of a gas at 27 °C is cooled to 20 °C at constant pressure. Calculate the volume of gas at Ans. Initial volume $(V_1) = 100 \text{ cm}^3$ Initial temperature $(T_1) = 27 + 273 = 300 \text{ K}$ Final volume $(V_2) = ?$ Final temperature $(T_2) = 20 + 273 = 293$ K $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ $\frac{100}{300} = \frac{V_2}{293}$ $V_2 = \frac{100 \times 293}{300} = 97.67 \text{ cm}^3$ Q.8. Hydrogen gas occupies a volume of 400 cm³ at a temperature of 27 °C and normal atmospheric pressure. Find the volume of the gas at 10 °C at constant pressure. Ans. Initial volume $(V_1) = 400 \text{ cm}^3$ Initial temperature $(T_1) = 27 + 273$ K = 300 K Final volume $(V_2) = ?$ Final temperature $(T_2) = 10 + 273 = 283$ K $\frac{\frac{V_1}{T_1} = \frac{V_2}{T_2}}{\frac{400}{300} = \frac{V_2}{283}}$ Now. = $V_2 = \frac{400 \times 283}{300} = 377.33 \text{ cm}^3$ 11

0.9.

- Carbon dioxide occupies a volume of 336 cm³ at S.T.P. Find its volume at 20 °C and at a pressure Given, $P_1 = 760 \text{ mm Hg}$, $P_2 = 700 \text{ mm Hg}$, $V_1 = 336 \text{ cm}^3$, $V_2 = ?$, $T_1 = 273 \text{ K}$, Ans. According to Perfect Gas equation $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$ $\frac{760 \times 336}{273} = \frac{700 \times V_2}{293}$ =>

-5

 \Rightarrow

=

÷.

->

$$V_2 = \frac{760 \times 336 \times 293}{273 \times 700}$$
$$V_2 = \frac{74820480}{191100} = 391.525 \text{ cm}^3$$

- 0,10. 2.5 dm³ of dry nitrogen gas is collected at a temperature of 27 °C and a pressure of 740 mm Hg. Find the volume of gas at S.T.P.
- Given, $P_1 = 740$ mm Hg, $P_2 = 760$ mm Hg, $V_1 = 2.5$ dm³, $V_2 = ?$, $T_1 = 27 + 273$ K = 300 K, Ans. $T_2 = 273 \text{ K}$

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$\frac{740 \times 2.5}{300} = \frac{760 \times V_2}{273}$$

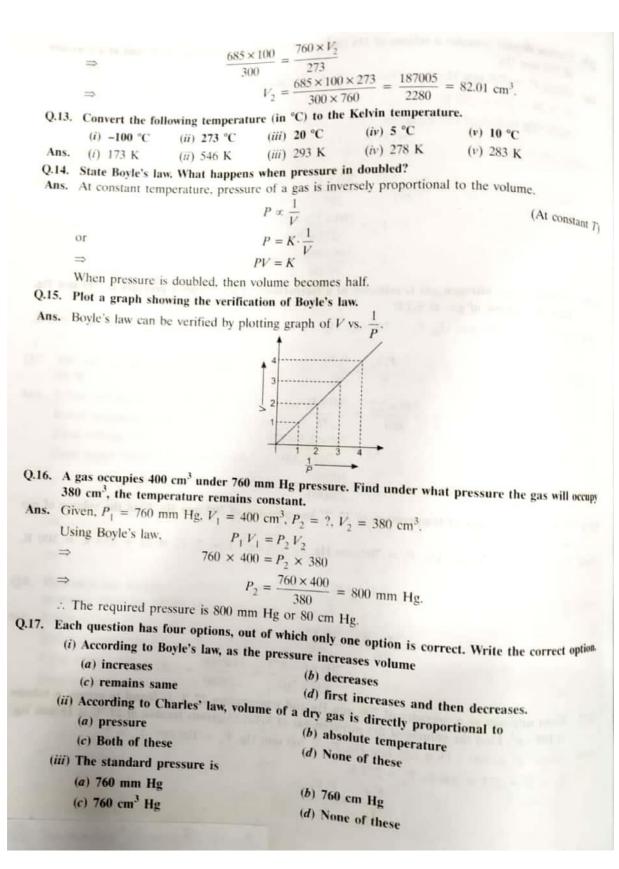
$$V_2 = \frac{740 \times 2.5 \times 273}{760 \times 300}$$

$$V_2 = \frac{505050}{228000} = 2.215$$

Q.11. 6 dm³ of a dry gas at temperature of 27 °C has pressure of 700 mm Hg. Find the volume of ga

dm

Ans. Given: $P_1 = 700 \text{ mm Hg}$, $P_2 = 760 \text{ mm Hg}$, $V_1 = 6 \text{ dm}^3$, $V_2 = ?$, $T_1 = 27 + 273 \text{ K} = 300 \text{ K}$ $T_2 = 273 \text{ K}$


$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$\frac{700 \times 6}{300} = \frac{760 \times V_2}{273}$$

$$V_2 = \frac{700 \times 6 \times 273}{300 \times 760} = \frac{1146600}{228000} = 5.03 \text{ dm}^3.$$

Moist nitrogen at a pressure of 700 mm Hg and temperature 27 °C is found to occupy a volu of 100 cm³. Find the volume of dry nitrogen gas at S.T.P. (Aqueous tension at 27 °C is 15 mm H Ans. Given: $P_1 = 700 - 15 = 685 \text{ mm Hg}, P_2 = 760 \text{ mm Hg}, V_1 = 100 \text{ cm}^3, V_2 = ?$ Q.12.

 $T_1 = 27 + 273 = 300$ K, $T_2 = 273$ K $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$.

	(iv) The standard temperature is							
	(a) 273 °C	(1) 1						
	(c) Both of these	(b) 2						
	(v) The temperature for absolute zero is	(<i>d</i>) N	None	of these	e			
	(a) -273 °C							
	(c) -273 K	(<i>b</i>)	-	270 °C				
		(<i>d</i>)	-	270 K				
Ans.	(i) (b) (ii) (b) (iii) (a)			iv) (b)		(v) $(a$)	
0.18.	Account how temperature and molecular i						PRACT	
Ans.	As the temperature increases the molecule	es gain	K.E	. (kineti	c ener	gy) and s	start moving faste	r.
0.19.	Convert: (i) 285 °C in kelvin (ii) 365 K in	°С.						
Ans.	(i) $285 + 273 = 558 \text{ K}$							
	(<i>ii</i>) $365 - 273 = 92$ °C.							
0.20.	Discuss the relationship between kelvin a	nd Cels	sius	scales o	f temp	erature?		
Ans.	$K = {}^{\circ}C + 273.$							
	What is S.T.P. or N.T.P. and what are its	values?						
Q.21.	It is the standard or normal condition of				ressure			
Ans.	Temperature = 27.		arm	e una p				
	Pressure = 76		Halo	r 76 cm	He			
<								
Q.22.	Define the behaviour of gases in terms of	r moiec	uiar	motion		, the int	ermolecular forc	e of
Ans.	attraction is minimum or negligible. Hend	ce the i	mole	cules m	ove in	an possie	ne unceuons.	
Q.23.	Why pressure and temperature should be	e given	whil	le provid	ling th	e volume	of a gas?	
Ans.	to be in improved to pressure a	nd dire	ectly	related	to abso	olute temp	perature.	
0.24	(a second secon							
Q.24	(a) Gases are highly compressible.							
	(b) Pressure cookers are widely used in	n hilly a	areas	i.				
	(c) Pressure is exerted by gas in all di	rection.						
	(D) Cases easily under go diffusion.							
	() Solide and liquids have higher dens	sity con	npar	ed to ga	ses.			
	tot d Enite chang r	or dell	inite	vonume.			intermole	cular
An	to the appen of gases the molecules a	re far a	ipart	from ea	ch oth	er, therei	ore, the intermole	culai
An	s. (a) In the case of gases, the more space is maximum thus, gases can b	be comp	press	ed.	lagran	see So th	he boiling point o	f the
	(b) As on higher altitudes or in hilly a	reas, tr	ne pi	used for	cooki	ng of foo	id.	
	liquid decreases, therefore, pressure	e cooke		il.i	dira	tions the	is exerting pressu	re as
	(c) The molecules of gases move rand pressure is defined as force acting	per un	nit ar	ea. Hen	ce pre	ssure of a	a gas or its impac	t can
	1 I an the wells of contain	not per						
	(d) It is so because gases have maximu	im inte	rmol	ecular s	pace.			
	(d) It is so because gases have maximum(e) In case of solids, the molecules are	e closel	ly pa	cked. In	the c	ase of liq	uids, the molecule	it is
	(e) In case of solids, the molecules are loosely packed, whereas in gases, observed that the molecules per un	the mo	olecu	iles are decrease	far ap and h	art from ence the	density also decre	ases.
	Observed management							

(f) In the case of gases, the intermolecular space is maximum and intermolecular force of attraction (f) In the case of gases, the intermolecular space is maximum and intermolecular force of attraction (f) In the case of gases, the intermolecular space is maximum and intermolecular force of attraction (f) In the case of gases, the intermolecular space is maximum and intermolecular force of attraction (f) In the case of gases, the intermolecular space is maximum and intermolecular force of attraction (f) In the case of gases, the intermolecular space is maximum and intermolecular force of attraction (f) In the case of gases, the intermolecular space is maximum and intermolecular force of attraction (f) In the case of gases, the intermolecular space is maximum and intermolecular force of attraction (f) In the case of gases, the intermolecular space is maximum and intermolecular force of attraction (f) In the case of gases, the intermolecular space is maximum and intermolecular force of attraction (f) In the case of gases, the intermolecular space is maximum and intermolecular force of attraction (f) In the case of gases, the intermolecular space is maximum and intermolecular force of attraction (f) In the case of gases is maximum and intermolecular space is maximum and in In the case of gases, the intermolecular space is maximum or experience any kind of attraction is minimum or negligible. Hence the molecules do not experience any kind of attraction attraction of at therefore, they neither have definite shape nor definite volume. (c) 185 K (d) 368 K Q.25. Convert the following in Celsius: (b) $33 - 273 = -240 \ ^{\circ}C$ (c) $185 - 273 = -88 \ ^{\circ}C$ (d) $368 - 273 = 95 \ ^{\circ}C$ (b) 33 K (a) 287 K (a) 287 - 273 = 14 °C Ans. PRACTICE QUESTIONS 1. Calculate the pressure of a gas, when its volume is 250 mL initially, the gas is expanded to volume Calculate the pressure of a gas, when its volume is zero in the temperature during the reaction temperature of 1000 mL and the pressure of 0.4 atmosphere. The temperature during the reaction temperature during the temperature during the reaction temperature during the temperature during constant.
2. At a constant temperature, a gas at a pressure of 750 mm of mercury occupies a volume of log for the new pressure. cm3. If volume is decreased by 40%, find the new pressure. 3. A gas is enclosed in a vessel at standard temperature. At what temperature, the volume of enclosed gas will be 1/6 of its initial volume, given that the pressure remains constant. 4. Match the following: Column II Column I (a) $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ (i) Boyle's law (b) $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$ (ii) Charles' law (c) $P_1 V_1 = P_2 V_2$ (iii) Perfect gas equation 5. Fill in the blanks. (i) 1 Atmosphere = $_$ cm Hg = $_$ mm Hg. (ii) 1 litre = $mL = cm^3$. (iii) Normal temperature - 273 K = °C. (iv) Gases have density. (v) Gases have neither definite _____ nor definite 6. A sample of a gas has a volume of 160 mL at a pressure of 864 mm Hg at a certain temperatu What will be the volume if the pressure is changed to 1440 mm Hg keeping temperature constant 7. Convert the following temperature on the Kelvin Scale to the Celsius Scale. (i) 150 K (ii) 335 K (iii) 250 K (iv) 100 K (v) 446 K 8. Convert the following in kelvin: (a) 25 °C (b) 95 °C (c) 218 °C (d) -102 °C 9. The pressure of a gas at S.T.P. is tripled when temperature is raised to 546 °C. What will be the change 10. Why Kelvin temperature is always positive? 11. Define diffusion. (12. Explain why absolute zero is a theoretical concept?

Self Evaluation Test

level 1

1. State

- (i) Boyle's law
- (ii) Charles' law
- 2. Name the quantity which is constant in (i) Boyle's law (ii) Charles' law.
- 3. What will be the pressure required to reduce 600 mL of a dry gas at 750 mm pressure to 500 mL at the same temperature.
- 4. Match the following:

Column I (Temperature in Celsius)	Column II (Temperature in Kelvin)		
(i) 0 °C	(a) 546 K		
(ii) 273 °C	(b) 293 K		
(iii) -273 °C	(c) 290 K		
(iv) 20 °C	(d) 0 K		
(v) 17 °C	(e) 273 K		

Level 2

5. Write the value of standard pressure in

(i) atm (ii) mm Hg (iii) cm Hg

6. The volume of a sample of gas is 12.5 mL at a pressure of 38 cm Hg. At what pressure will the volume be 7.5 mL, keeping temperature constant?

7. Convert the following temperature to kelvin.

Contract	(ii) -200 °C
(i) 15 °C	(iv) 25 °C
(iii) 40 °C	()
(v) 173 °C	
. Convert the following temperature to Celsius.	(ii) 209 K
(i) 486 K	
	(iv) 789 K
(iii) 590 K	
(v) 150 K	

Level 3

- 10. A 226 mL of oxygen gas is heated from 18.5 °C to 96 °C at constant pressure. Calculate the new volume o 11. Gas 'A' occupies 55 mL at 91 °C and 6 atm. What will be the volume of the gas 'A' at S.T.P.?
- 12. Why does the size of a weather balloon become larger and larger as it ascends into higher space?
- 13. Kelvin scale has been majorly adopted for the chemical calculation. Why?
- 14. Write the importance of STP.