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I;Tangle—\mmx__lis—: plane lyigmic bounded by three line segments, These three i, ﬂ-rc ‘
of the triangle and the points where they meet are called vertices of the triangle, Cillg
In the given figure. ABC is a triangle. In which AB. BC and CA are the three sides,
A. B and C are called three vertices,
ZBAC, ZABC and £ ACB are the three angles of the triangle.

Intersecting lines: If two lines meet at a common point in a plane. then they are called
intersecting lines and point where the lines meet is called the point of intersection,
Concurrent lines: Three or more lines passes through the same point in a pl
The common point is called the point of concurrence of the lines,

are congruent',

ane are called Concyy,

lines.
C.PCT: It re

Postulate: Postulate means the assum
that forms the base of a theory. i.c. proof of statement is required.

Axiom: Axiom means the common notations refers to the magnitude of some kind. 1t is a rule or princigk
1.c. proof for such rules or principles are not required.

fers to “corresponding part of congruent triangles
ption specific to geometry and is a statement that is accepted oy,

that most people believe to be true.
I. Types of Triangles on the Basis of Sides:
sides unequal, is called scalene triangle.

(@) Scalene triangle: A triangle with all
an isosceles triangle.

(b) Isosceles triangle: A triangle having two sides equal, is called
(¢) Equilateral triangle: If all the three sides of a tnangle are equal, then it is called an equilaterd
triangle.
2. Types of Triangles on the Basis of Angles:
(@) Acute-angled triangle: If all the three angles of a triangle are less than 90°, then it is called

acute-angled triangle. i
(b) Right-angled triangle: If one angle of a triangle is equal to 90°, then it is called right-angle

triangle. —
(¢) Obtuse-angled triangle: If onc angle of a triangle is obtuse (greater than 90°), then it is call

an obtuse-angled triangle. x

' iangle » opposite side,
3. Altitude: Perpendicular drawn from a vertex of a triangle to the opy

is called an altitude of the triangle. i an )
. e , B an . E
A trizngle ABC has maximum threc altitudes, i.e. AD, B i, il
. : sas h the same . ; i
All three altitudes of a triangle passes throug M is the orthocentre

. adioining figure,
called the Orthocentre of the triangle. In adjoining 1ig

of AABC.
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(‘irﬂ“""“'" and Circumcircle: [ine bisecti
¢ m:ndm‘"" to 11 1s called the right bisector.
TP-; point of intc rsection of three right bisectors of a triangle is called Circumeentre
and the circle drawn with *O’ as centre touching all the vertices of the triangle is
lled its carcu mcircle. The circumcircle touches all the three vertices of the triangle. 0

Statement: R -
Theorems * . .

|. The sum of three angles of a tnangle is 180°, :

' i d is eqau: . ¢ WO
> If a side of a triangle is produced. the exterior angle so formed is equal to the sum of the

ng a side of a triangle and

interior opposite angles.
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Triangles: Two tnangB Z_ and APQR.

and size, ¢.g. In S‘V;';‘iAPQ BC = QR AC = PR/R
A /P /B = 2Q. ¢
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> If AMBC = APOR. 2 ing sides and corresponding angles are equal.
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3. In cong ding sides lie opposite 10 the equa g ing o

1. The correspondi 2 s . .

opposite to equal sides.
2.

Conditions for Congruency of Triangles: i gl .
SAS (Side-Angle-Side) axiom of congruency: IW( g
ta) S: - S

. . : cSa“
i nd inclvded angle of the dy
i e of one triangle are equal to two sides a % Othey gy
included angle of or £ f gruency: Two triangles are congruent if twq ng R
. paie con AL & : : es.
AS gle-Side-Angle) axiom o : » and the included « i,
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(¢) AAS (Angle-Angle-Side) axiom of congruency: Two tr gles R y?“"’ g
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(d) SSS (Side-Side-Side) axiom of congruency: lTwo m'mg.d w—y. e bl
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of one triangle are equal to the corresponding threc sides ¢ 5 : |
gruency: Two right-angled triangje "

(e) RHS (Right Angle-Hypotenuse-Side) axiom of con
congruent if the hypotenuse and one side of one triangle are equal to the hypotenuse 44 one

side of the other triangle.
8. Isosceles Triangle: A triangle in which two sides are equal is called an 1s0sceles triang]e, Angle

Opposite to equal sides are cqual. These angles are called base angles.
Theorems Statement:
I.If two sides of a triangle are e
2. In an equilateral triangle, each angle is 60°.
3. If two angles of a triangle are cqual. then the
Inequality Properties of a Triangle:

Theorems Statement:
L If two sides of a triangle are unequal, the greater side has greater angle opposite to ijt.

2. If two angles of a triangle are uncqual, the greater angle has greater side opposite to it.
3. The sum of any two sides of a triangle is greater than the thirg side.
4. Of all the straight lines that can be drawn to a given Straight line from a point outside it, the
perpendicular is the shortest.
Axiom of Congruency:
Nustration through cut outs:
L. Side-Side-Side (SSS) Axiom

are congruent if all the three Sid,

l

qual. then the angles opposite to them are also equal.

sides opposite to them are also equal.

A P 6cm Q

4cm 6cm
4cm S5cm




v

L
.

]

ABC.
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] = 5em, AC = 6 ¢
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\ABC is hidden by APRQ.
ence. AABC = APRQ (S8.5.) o Nean
sidc-.—\nglc-Sidc (SAS)
A By == —
P i)
/ Fig (a)
sem/
/ 5cm
48°
8 Gem (o Q = N
__\,“‘chﬁv R AP
In AB = 5 T | )
In Al’QR" QR = ¥ cm, ZABC = 4R°
= b cm, PR =5 5 cm
If we cut APRQ and superimpose it over AABC ey £PRO: = 48°
We see that. BC as shown in fig. (b).
AABC = A a8 My
PRQ (SAS) O
Angle-Angle-Side (AAS) Fo. )
A
45°
30°
B 5cm C
In AABC, BC = 5 cm, LA = 45°, £B =30 AQ)
In APOR, PR = 5cm, £Q = 45°, LR =30
If we cut AQRP and superimpose it over AABC as shown in fig. (¢).
A
We see that, AABC = AQRP (AAS) B(R) 5 cm P
. Fig. {c)
Right-Angle-Hypotenuse-Slde (RHS)
A R
6 cm 6 cm AP)
4 cm
6 cm
Q
4 cm
c B 2 = 4cm
g = 90, AC =6 &
In AABC, 4Q"90° pR=6cm,PQ=4cm
In ARCE. it over ABC as shown 11 fig. (d)- CR) Fig. @)
1 0s€ 1 ig.
If we cut APOR and supernmp )
we cut APQ ABC = APOR (RES)

We see that,

4 cm

B(Q)




5. Angle-Side-Angle (ASA)
=]

A
4 cm 30°
B N s a 4 cm . AQ)
In AABC, /4 =30°, LB=45AB = 4 cm 4 cm/ 30°
In APQR. 20 = 30, LR =45, QR =4cm
If we cut APQR and superimpose it over AABC as shown in fig. (¢)- 45°
B(R) .
Fig. (e)

We see that, AABC = AQRP (ASA)

Of all straight lines that can be drawn to a given line from a poin

t outside it, the perpendiculari

Cp

6.
the shortest.
Given: A line AB and P is a point outside it. ,P\
Construction: Draw Perpendicular PM on AB / !
Join P to Q S
Join P to R
To prove: ﬂ/! is the shortest of all line segments that can be drawn P R‘/I ! )‘-’ “
from P on AB. A M a #
Proof: In APMQ, ‘\
ZPMQ > LPOM [ZPMQ = o0’
PQ > PM
In APMR,
/PMR > ZPRM o
PR > PM ERMR=

Hence. PM is the shortest line segment that can be drawn to a line from a point outside it
utside it.
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{. In the figure alongside,
AB = AC
ZA = 48° and
ZACD =
Show that :

18°.
BC = CD

BA‘%
D c

3. In the following figure, AB = AC; BC = CD
and DE is parallel to BC. Calculate :

2. Calculate :
(i) £ZADC
(ii)) ZABC
(i) ZBAC

(i) ZCDE £
(ii) ZDCE 128° QA
D E
B c
4. Calculate x :

()

V5. In the figure, given below, AB = AC.
Prove that : ZBOC = ZACD.

A

6. In the figure given below, LM = LN; angle
PLN = 110°. Calculate :
(i) ZLMN

(i) ZMLN 0

S s

Q " N R

7. An isosceles triangle ABC has AC = BC. CD
bisects AB at D and ZCAB = 55°.
Find : (i) £ZDCB (ii) ZCBD.




